论文标题

空间山的月球问题中的双对称周期性轨道,dontarate secentarate Primary

Doubly-symmetric periodic orbits in the spatial Hill's lunar problem with oblate secondary primary

论文作者

Xu, Xingbo

论文摘要

在本文中,我们考虑了在空间圆形山的月球问题中存在一个双对称周期性轨道的家族,其中次要原始原始原产为。存在通过将固定点定理应用于在消除近似系统的一阶扰动中的短期周期效应后,将固定点定理应用于在繁殖性元素元素中表达的周期性条件的方程。

In this article we consider the existence of a family of doubly-symmetric periodic orbits in the spatial circular Hill's lunar problem, in which the secondary primary at the origin is oblate. The existence is shown by applying a fixed point theorem to the equations with periodical conditions expressed in Poincare-Delaunay elements for the double symmetries after eliminating the short periodic effects in the first-order perturbations of the approximated system.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源