论文标题
INF-VAE:一个差异自动编码器框架,以集成同质和影响扩散预测
Inf-VAE: A Variational Autoencoder Framework to Integrate Homophily and Influence in Diffusion Prediction
论文作者
论文摘要
近年来,人们对理解和预测在Twitter,Facebook等社交媒体平台上传播的信息传播的巨大兴趣。现有的扩散预测方法主要通过将扩散级联级联投射到其当地的社交社区来利用受影响用户的顺序顺序。但是,这无法捕获任何在任何级联中都没有明确表现出来的全球社会结构,从而导致历史活动有限的不活跃用户的性能差。 在本文中,我们提出了一个新颖的变分自动编码器框架(INF-VAE),以通过邻近性的社会和位置编码的临时潜在变量共同嵌入同质和影响。为了模拟社会同质性,Inf-Vae利用强大的图形神经网络体系结构来学习有选择地利用用户社交联系的社交变量。鉴于一系列种子用户的激活,INF-VAE使用了一种新型的表达共同的融合网络,该网络共同参加了他们的社交和时间变量,以预测所有受影响的用户的集合。我们对包括DIGG,微博和堆栈交换在内的多个现实世界社交网络数据集的实验结果表明,与最先进的扩散预测模型相比,INF-VAE的INF-VAE有显着增长(22%MAP@10);我们为活动稀疏的用户和种子集缺乏直接社交邻居的用户带来了巨大的收益。
Recent years have witnessed tremendous interest in understanding and predicting information spread on social media platforms such as Twitter, Facebook, etc. Existing diffusion prediction methods primarily exploit the sequential order of influenced users by projecting diffusion cascades onto their local social neighborhoods. However, this fails to capture global social structures that do not explicitly manifest in any of the cascades, resulting in poor performance for inactive users with limited historical activities. In this paper, we present a novel variational autoencoder framework (Inf-VAE) to jointly embed homophily and influence through proximity-preserving social and position-encoded temporal latent variables. To model social homophily, Inf-VAE utilizes powerful graph neural network architectures to learn social variables that selectively exploit the social connections of users. Given a sequence of seed user activations, Inf-VAE uses a novel expressive co-attentive fusion network that jointly attends over their social and temporal variables to predict the set of all influenced users. Our experimental results on multiple real-world social network datasets, including Digg, Weibo, and Stack-Exchanges demonstrate significant gains (22% MAP@10) for Inf-VAE over state-of-the-art diffusion prediction models; we achieve massive gains for users with sparse activities, and users who lack direct social neighbors in seed sets.