论文标题
开发连接和自动化的车辆纵向控制模型
Development of a Connected and Automated Vehicle Longitudinal Control Model
论文作者
论文摘要
可以预见的是,将来,我们道路上的大多数车辆都将自动控制,并将通过车辆连接到所有(V2X)无线通信网络。开发连接和自动化的车辆(CAV)纵向控制器,该纵向控制器将同时考虑安全,舒适和操作效率,这是一个挑战。 CAV纵向控制器是一个复杂的系统,在该系统中,车辆使用其传感器立即感知上游车辆,并通过无线连接接收有关其周围环境的信息,并相应地向前移动。在这项研究中,我们开发了一种信息感知的驱动程序模型(IADM),该模型通过CAV传感器和V2X连通性利用了有关受试者的直接上游车辆的信息,同时考虑了乘客的舒适度和操作效率,并维持安全间隙,以确保自动驾驶汽车的纵向车辆运动。与现有的纵向控制驾驶员模型不同,IADM智能地融合了从车辆传感器中接收到的数据,以及通过无线连接的主题CAV的上游车辆,而IADM参数无需为不同的交通状态(例如拥挤的交通拥堵和交通拥堵条件)进行校准。它仅需要定义主题CAVS最大加速度和减速限制,以及更新主题CAVS轨迹所需的计算时间。我们的分析表明,根据CAV的速度和反应时间,IADM(i)能够使用新定义的安全间隙功能来维持安全性; (ii)显示了局部稳定性和弦稳定性,(iii)为一系列自主驾驶的攻击性提供了骑行舒适性,具体取决于乘客的喜好。
It is envisioned that, in the future, most vehicles on our roadway will be controlled autonomously and will be connected via vehicle to everything (V2X) wireless communication networks. Developing a connected and automated vehicle (CAV) longitudinal controller, which will consider safety, comfort and operational efficiency simultaneously, is a challenge. A CAV longitudinal controller is a complex system where a vehicle senses immediate upstream vehicles using its sensors and receives information about its surroundings via wireless connectivity, and move forward accordingly. In this study, we develop an information-aware driver model (IADM) that utilizes information regarding an immediate upstream vehicle of a subject CAV through CAV sensors and V2X connectivity while considering passenger comfort and operational efficiency along with maintaining safety gap for longitudinal vehicle motion of the autonomous vehicle. Unlike existing driver models for longitudinal control, the IADM intelligently fuses data received from in vehicle sensors, and immediate upstream vehicles of the subject CAV through wireless connectivity, and IADM parameters do not need to be calibrated for different traffic states, such as congested and non congested traffic conditions. It only requires defining the subject CAVs maximum acceleration and deceleration limit, and computation time that is needed to update the subject CAVs trajectory from its previous state. Our analyses suggest that the IADM (i) is able to maintain safety using a newly defined safe gap function depending on the speed and reaction time of a CAV; (ii) shows local stability and string stability and (iii) provides riding comfort for a range of autonomous driving aggressiveness depending on the passenger preferences.