论文标题

$ c-(k,\ ell)$ - 无和套件

$C-(k, \ell)$-Sum-Free Sets

论文作者

Zhang, Rachel

论文摘要

Minkowski的两个子集$ a $和$ b $的Minkowski总和定义为$ a $ a $ a $ a和$ b $的所有成对元素:$ a + a + a + b = \ {a + b = \ {a + b:a \ in a,b \ in B \} $中的a \ a \ a \ a \ a \ a \ a \。 $ g $中的$(k,\ ell)$的最大尺寸是$ g $中的无汇总集,在这种情况下,$ g = \ mathbb {z}/n \ mathbb {z} $最近由Bajnok and Matzke计算出来。克拉维兹(Kravitz)由无汇总的圆环集合,引入了两组的嘈杂的Minkowski总和,可以将其视为对这些连续总和的离散评估。也就是说,给定噪声集$ c $,嘈杂的minkowski和定义为$ a + _c b = a + b + c $。在此新总和下,我们给出了$(k,\ ell)$的最大尺寸 - $ \ mathbb {z}/n \ mathbb {z} $的$ \ mathbb {z}/n \ mathbb {z} $的最大范围,对于$ c $,对于等于算术差的$ c $,相当于常见的差异,相对差异为$ n $,对于任何两个元素set $ c $。

The Minkowski sum of two subsets $A$ and $B$ of a finite abelian group $G$ is defined as all pairwise sums of elements of $A$ and $B$: $A + B = \{ a + b : a \in A, b \in B \}$. The largest size of a $(k, \ell)$-sum-free set in $G$ has been of interest for many years and in the case $G = \mathbb{Z}/n\mathbb{Z}$ has recently been computed by Bajnok and Matzke. Motivated by sum-free sets of the torus, Kravitz introduces the noisy Minkowski sum of two sets, which can be thought of as discrete evaluations of these continuous sumsets. That is, given a noise set $C$, the noisy Minkowski sum is defined as $A +_C B = A + B + C$. We give bounds on the maximum size of a $(k, \ell)$-sum-free subset of $\mathbb{Z}/n\mathbb{Z}$ under this new sum, for $C$ equal to an arithmetic progression with common difference relatively prime to $n$ and for any two element set $C$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源