论文标题

连接图的尖锐的矿石型条件,没有诱导恒星具有Hamiltonian路径

A sharp Ore-type condition for a connected graph with no induced star to have a Hamiltonian path

论文作者

Choi, Ilkyoo, Kim, Jinha

论文摘要

我们说,如果$ g $有一个hamiltonian路径,则它的路径包含$ g $的所有顶点。对于图$ g $,令$σ_2(g)$表示两个$ g $的两个非附件顶点的最低度和; $σ_2(g)$的限制称为矿石型条件。给定一个整数$ t \ geq 5 $,我们证明,如果$ n $ vertices上的连接图形$ g $满足$σ_2(g)> {t-3 \ fover t-2} n $,则$ g $具有汉密尔顿路径或诱导的子差速度为iSmorphic is-graph isOmorphic to $ k_ $ k_ {1,t} $,t} $。此外,我们表征了所有$ n $ vertex图$ g $其中$σ_2(g)= {t-3 \ tot t-2} n $和$ g $既没有哈密顿路径,也不是诱导的子graph同构至$ k__ {1,t} $。这是Momège最近结果的类似物,他在$ t = 4 $的情况下调查了此案。

We say a graph $G$ has a Hamiltonian path if it has a path containing all vertices of $G$. For a graph $G$, let $σ_2(G)$ denote the minimum degree sum of two nonadjacent vertices of $G$; restrictions on $σ_2(G)$ are known as Ore-type conditions. Given an integer $t\geq 5$, we prove that if a connected graph $G$ on $n$ vertices satisfies $σ_2(G)>{t-3\over t-2}n$, then $G$ has either a Hamiltonian path or an induced subgraph isomorphic to $K_{1, t}$. Moreover, we characterize all $n$-vertex graphs $G$ where $σ_2(G)={t-3\over t-2}n$ and $G$ has neither a Hamiltonian path nor an induced subgraph isomorphic to $K_{1, t}$. This is an analogue of a recent result by Momège, who investigated the case when $t=4$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源