论文标题
四边形图的维也纳指数
Wiener Index of Quadrangulation Graphs
论文作者
论文摘要
图$ g $的Wiener索引,表示为$ W(g)$,是$ g $中所有顶点之间的距离的总和。 é。 Czabarka等。推测,对于$ n $ vertex,$ n \ geq 4 $,简单四边形图$ g $, \ begin {equination*} w(g)\ leq \ begin {case} \ frac {1} {12} {12} n^3+\ frac {7} {6} {6} n-2,&\ text {$ n \ equiv 0〜(mod \ 2) \ frac {1} {12} n^3+\ frac {11} {12} n-1,&\ text {$ n \ equiv 1〜(mod \ 2)$}。 \ end {case} \ end {equation*}在本文中,我们确认了这个猜想。
The Wiener index of a graph $G$, denoted $W(G)$, is the sum of the distances between all pairs of vertices in $G$. É. Czabarka, et al. conjectured that for an $n$-vertex, $n\geq 4$, simple quadrangulation graph $G$, \begin{equation*}W(G)\leq \begin{cases} \frac{1}{12}n^3+\frac{7}{6}n-2, &\text{ $n\equiv 0~(mod \ 2)$,}\\ \frac{1}{12}n^3+\frac{11}{12}n-1, &\text{ $n\equiv 1~(mod \ 2)$}. \end{cases} \end{equation*} In this paper, we confirm this conjecture.