论文标题
使用基于局部测量的NMR量子处理器上的基于局部测量的层次结构对非本地相关性进行实验检测
Experimental Detection of Non-local Correlations using a Local Measurement-Based Hierarchy on an NMR Quantum Processor
论文作者
论文摘要
量子系统所具有的相关性的非本地性质可以通过实验证明违反贝尔型不平等的情况来揭示。最近的工作已经在量子系统可以在实际实验中拥有的相关性范围。这些边界仅限于一个复合量子系统,该系统由一些较低维的子系统组成。在一种更通用的方法中,已经表明,更少的身体相关性可以揭示由自然的量子机械描述引起的相关性的非本地性质。有关相关性的此类测试可以转换为半准计划(SDP)。这项研究报告了利用三个核自旋作为Qubits的核磁共振(NMR)硬件的基于局部测量的层次结构的实验实施。该协议已在真正纠缠的三方状态(例如W State,GHz状态和一些图形状态)上进行了实验测试。在所有情况下,都使用实验测量的相关性来制定SDP,并在矩矩阵的条目上使用线性约束。我们观察到,对于每个真正纠缠的状态,SDP未能找到与实验数据一致的半明确矩矩阵。这意味着观察到的相关性不能源于可分离状态上的局部测量,因此本质上是非本质上的,并且也证实了所测试的状态确实被纠缠在一起。
The non-local nature of the correlations possessed by quantum systems may be revealed by experimental demonstrations of the violation of Bell-type inequalities. Recent work has placed bounds on the correlations that quantum systems can possess in an actual experiment. These bounds were limited to a composite quantum system comprising of a few lower-dimensional subsystems. In a more general approach, it has been shown that fewer body correlations can reveal the non-local nature of the correlations arising from a quantum mechanical description of nature. Such tests on the correlations can be transformed to a semi-definite program (SDP). This study reports the experimental implementation of a local measurement-based hierarchy on the nuclear magnetic resonance (NMR) hardware utilizing three nuclear spins as qubits. The protocol has been experimentally tested on genuinely entangled tripartite states such as W state, GHZ state and a few graph states. In all the cases, the experimentally measured correlations were used to formulate the SDP, using linear constraints on the entries of the moment matrix. We observed that for each genuinely entangled state, the SDP failed to find a semi-definite positive moment matrix consistent with the experimental data. This implies that the observed correlations can not arise from local measurements on a separable state and are hence non-local in nature, and also confirms that the states being tested are indeed entangled.