论文标题
SK-UNET:具有选择性内核的改进的U-NET模型,用于分割多序列心脏MR
SK-Unet: an Improved U-net Model with Selective Kernel for the Segmentation of Multi-sequence Cardiac MR
论文作者
论文摘要
在临床环境中,主要基于晚期的Gadolinium增强(LGE)心脏磁共振图像(CMRIS)评估心肌梗死(MI)作为一种COM-MON心血管疾病。 LGE CMRI中的左心室(LV),右心室(RV)和左VEN-TRICULAR心肌(LVM)的自动示意分割是诊所中的辅助诊断。为了完成此细分任务,本文通过结合包括Cine,LGE和T2加权CMRI的多序列CMRI来提出修改后的U-NET体系结构。 CINE和T2加权CMRI用于协助LGE CMRIS中的分割。在此分割网络中,将挤压和激发残差(SE-RES)和选择性内核(SK)模块插入到下采样和上采样阶段中,分别相应。 SK模块使获得的特征地图在空间和频道空间中都更有信息,并获得了更精确的分割结果。使用的数据集来自MICCAI挑战(MS-CMRSEG 2019),该数据集是从45名患者中获得的,其中包括三个CMR序列。从35例患者中获得的CINE和T2加权CMRI,并从5例患者中获得的LGE CMRI被标记。我们的方法在LGE CMRIS中达到了平均骰子得分为0.922(LV),0.827(LVM)和0.874(RV)。
In the clinical environment, myocardial infarction (MI) as one com-mon cardiovascular disease is mainly evaluated based on the late gadolinium enhancement (LGE) cardiac magnetic resonance images (CMRIs). The auto-matic segmentations of left ventricle (LV), right ventricle (RV), and left ven-tricular myocardium (LVM) in the LGE CMRIs are desired for the aided diag-nosis in clinic. To accomplish this segmentation task, this paper proposes a modified U-net architecture by combining multi-sequence CMRIs, including the cine, LGE, and T2-weighted CMRIs. The cine and T2-weighted CMRIs are used to assist the segmentation in the LGE CMRIs. In this segmentation net-work, the squeeze-and-excitation residual (SE-Res) and selective kernel (SK) modules are inserted in the down-sampling and up-sampling stages, respective-ly. The SK module makes the obtained feature maps more informative in both spatial and channel-wise space, and attains more precise segmentation result. The utilized dataset is from the MICCAI challenge (MS-CMRSeg 2019), which is acquired from 45 patients including three CMR sequences. The cine and T2-weighted CMRIs acquired from 35 patients and the LGE CMRIs acquired from 5 patients are labeled. Our method achieves the mean dice score of 0.922 (LV), 0.827 (LVM), and 0.874 (RV) in the LGE CMRIs.