论文标题

在r^n中的两个点的配置空间中的大地学

Geodesics in the configuration spaces of two points in R^n

论文作者

Davis, Donald M

论文摘要

我们确定在r^n的有序对(x,x,x')配置空间(在欧几里得公制中)的显式公式(在欧几里得公制中),在r^n的点(x,x,x')中满足d(x,x')> = epsilon。我们将其解释为两个或三个(取决于N的均衡),该配置空间的测量运动规则规则。在关联的无序配置空间中,我们不必规定Epsilon的分开。对于这个空间,使用欧几里得公制,我们表明地球运动规则规则对应于Rp^{n-1}上的普通运动规则规则。

We determine explicit formulas for geodesics (in the Euclidean metric) in the configuration space of ordered pairs (x,x') of points in R^n which satisfy d(x,x')>=epsilon. We interpret this as two or three (depending on the parity of n) geodesic motion-planning rules for this configuration space. In the associated unordered configuration space, we need not prescribe that the points stay apart by epsilon. For this space, with a Euclidean metric, we show that geodesic motion-planning rules correspond to ordinary motion-planning rules on RP^{n-1}.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源