论文标题

微极连续性粘性断裂的相位场模型

A phase field model for cohesive fracture in micropolar continua

论文作者

Suh, Hyoung Suk, Sun, WaiChing, O'Connor, Devin

论文摘要

虽然可以通过变异或基于材料的相相断裂模型来预测脆性或准脆性状态中的裂纹成核和传播,但这些模型通常假设材料的潜在弹性响应是非极态的,但必须引入长度比例参数以启用由正常构造的隐式函数代表的急剧裂纹。但是,许多具有内部微观结构的材料,这些材料包含表面张力,微裂缝,微裂纹,包容性,腔或颗粒性质的腔通常在与路径无关和路径依赖性方向上通常都表现出尺寸依赖性行为。本文旨在引入一种统一的治疗方法,该处理捕获弹性和受损状态下材料的尺寸效应。通过引入粘性微极相位场断裂理论,以及计算模型和验证练习,我们探索了相互作用的尺寸依赖性弹性变形和断裂机制在复杂微结构的材料中表现出。为了实现这一目标,我们介绍了给定正则化曲线的力压力 - 应变和夫妻触发 - 压力 - 微调能量偶联对的独特降解函数,以使微极性连续性的宏观尺寸依赖性响应对正则化界面的长度尺度参数不敏感。然后,我们将变分原理应用于从微极储存的能量和耗散功能中得出方程。引入了数值示例,以证明确定材料参数的正确方法以及新公式的能力,以模拟准静态状态中的复杂裂纹模式。

While crack nucleation and propagation in the brittle or quasi-brittle regime can be predicted via variational or material-force-based phase field fracture models, these models often assume that the underlying elastic response of the material is non-polar and yet a length scale parameter must be introduced to enable the sharp cracks represented by a regularized implicit function. However, many materials with internal microstructures that contain surface tension, micro-cracks, micro-fracture, inclusion, cavity or those of particulate nature often exhibit size-dependent behaviors in both the path-independent and path-dependent regimes. This paper is intended to introduce a unified treatment that captures the size effect of the materials in both elastic and damaged states. By introducing a cohesive micropolar phase field fracture theory, along with the computational model and validation exercises, we explore the interacting size-dependent elastic deformation and fracture mechanisms exhibits in materials of complex microstructures. To achieve this goal, we introduce the distinctive degradation functions of the force-stress-strain and couple-stress-micro-rotation energy-conjugated pairs for a given regularization profile such that the macroscopic size-dependent responses of the micropolar continua is insensitive to the length scale parameter of the regularized interface. Then, we apply the variational principle to derive governing equations from the micropolar stored energy and dissipative functionals. Numerical examples are introduced to demonstrate the proper way to identify material parameters and the capacity of the new formulation to simulate complex crack patterns in the quasi-static regime.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源