论文标题

预测几乎不变的模式的分叉:一种面向设定的方法

Predicting bifurcations of almost-invariant patterns: a set-oriented approach

论文作者

Ndour, Moussa, Padberg-Gehle, Kathrin

论文摘要

在分析地球物理流中,对流动模式的突然变化的理解和预测至关重要,因为这些罕见事件与关键现象有关,例如大气阻滞,墨西哥湾流的削弱或极性涡流的分裂。在这项工作中,我们的目标是迈向对涡流分裂现象的理论理解的第一步。为此,我们研究了参数依赖性的二维不可压缩流中全局流动模式的分歧,感兴趣的流模式对应于特定的不变集。在小的随机扰动下,这些集合几乎变不变,可以通过设定的方法来计算和研究,在这种方法中,基础动力学的描述是用可逆的有限状态马尔可夫链来描述的。几乎不变的集合是从相应过渡矩阵的前导特征向量的符号结构中获得的。通过流动模式分叉,我们是指达到基础动力学系统的关键外部参数时,分解形式的定性变化。对于不同的示例和设置,我们遵循频谱和相应的特征向量,在基础系统的连续更改和几乎不变集合的不同分叉场景的连续变化下。特别是,我们研究了一个行李型振荡器,该振荡器已知会经典的干草叉分叉。我们发现,这种经典分叉的面向设定的类似物包括旋转模式的分裂,该模式具有可以从光谱行为中推导的通用前体信号。

The understanding and prediction of sudden changes in flow patterns is of paramount importance in the analysis of geophysical flows as these rare events relate to critical phenomena such as atmospheric blocking, the weakening of the Gulf stream, or the splitting of the polar vortex. In this work our aim is to develop first steps towards a theoretical understanding of vortex splitting phenomena. To this end, we study bifurcations of global flow patterns in parameter-dependent two-dimensional incompressible flows, with the flow patterns of interest corresponding to specific invariant sets. Under small random perturbations these sets become almost-invariant and can be computed and studied by means of a set-oriented approach, where the underlying dynamics is described in terms of a reversible finite-state Markov chain. Almost-invariant sets are obtained from the sign structure of leading eigenvectors of the corresponding transition matrix. By a flow pattern bifurcation we mean a qualitative change in the form of a break-up of an almost-invariant set, when a critical external parameter of the underlying dynamical system is reached. For different examples and settings we follow the spectrum and the corresponding eigenvectors under continuous changes of the underlying system and yield indicators for different bifurcation scenarios for almost-invariant sets. In particular, we study a Duffing-type oscillator, which is known to undergo a classic pitchfork bifurcation. We find that the set-oriented analogue of this classical bifurcation includes a splitting of a rotating pattern, which has generic precursor signal that can be deduced from the behavior of the spectrum.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源