论文标题

从偏见的模拟和多态重新加权的统计上最佳的连续自由能表面

Statistically optimal continuous free energy surfaces from biased simulations and multistate reweighting

论文作者

Shirts, Michael R., Ferguson, Andrew L.

论文摘要

自由能作为选定的一组集体变量的函数通常在分子模拟中计算,并且在理解和工程分子行为中具有显着价值。这些自由能表面最常使用直方图技术的变体估算,但是这种方法掩盖了这些功能的两个重要方面。首先,沿着集体变量的经验观察是由离散观察的集合定义的,将这些观测值的整合变成直方图垃圾箱会造成不必要的信息丢失。其次,自由能表面本身几乎总是连续的函数,并且由于离散化而导致的固有近似值引入了固有的近似值。在这项研究中,我们将观察到的从偏置模拟观察结果与集体变量上的基本连续概率分布相关联,并得出无直方图技术,以估计该自由能表面。我们将自由能表面的估计重新制定为最小化持续试验函数与离散经验分布之间的kullback-leibler差异,并表明这相当于一组采样数据的可能性最大化试验函数。然后,我们提出了这种形式主义的完全贝叶斯治疗方法,该处理能够纳入强大的贝叶斯工具,例如包括正规化的先验,不确定性量化和模型选择技术。我们在分析了T4溶菌酶在腔中与苯结合的L99A突变体中valine sidechain的$χ$ torsion的伞采样模拟的分析中证明了这种新的形式主义。

Free energies as a function of a selected set of collective variables are commonly computed in molecular simulation and of significant value in understanding and engineering molecular behavior. These free energy surfaces are most commonly estimated using variants of histogramming techniques, but such approaches obscure two important facets of these functions. First, the empirical observations along the collective variable are defined by an ensemble of discrete observations and the coarsening of these observations into a histogram bins incurs unnecessary loss of information. Second, the free energy surface is itself almost always a continuous function, and its representation by a histogram introduces inherent approximations due to the discretization. In this study, we relate the observed discrete observations from biased simulations to the inferred underlying continuous probability distribution over the collective variables and derive histogram-free techniques for estimating this free energy surface. We reformulate free energy surface estimation as minimization of a Kullback-Leibler divergence between a continuous trial function and the discrete empirical distribution and show that this is equivalent to likelihood maximization of a trial function given a set of sampled data. We then present a fully Bayesian treatment of this formalism, which enables the incorporation of powerful Bayesian tools such as the inclusion of regularizing priors, uncertainty quantification, and model selection techniques. We demonstrate this new formalism in the analysis of umbrella sampling simulations for the $χ$ torsion of a valine sidechain in the L99A mutant of T4 lysozyme with benzene bound in the cavity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源