论文标题

进化空间模型中的突变时间

Mutation timing in a spatial model of evolution

论文作者

Foo, Jasmine, Leder, Kevin, Schweinsberg, Jason

论文摘要

由癌症形成模型的动机,在这种模型中,细胞需要获得$ k $突变才能变成癌性,我们考虑了一种空间种群模型,其中人口以$ d $ d $维的侧面长度$ l $表示。最初,没有任何站点有突变,但是具有$ i-1 $突变的站点以$ $ $μ_i$单位区域的价格获得了一个$ i $ th的突变。突变以$α$的速度扩散到相邻站点,因此突变后的$ t $时间单元,获得该突变的个体的区域将是半径$αt$的球。我们计算出参数值的某些范围,某些人获得$ k $突变所需的时间的渐近分布。我们的结果是基于杜雷特,foo和leder的先前工作,当$ k = 2 $,当$μ_i=μ$ $ $ $时,我们的结果基本上是完整的。

Motivated by models of cancer formation in which cells need to acquire $k$ mutations to become cancerous, we consider a spatial population model in which the population is represented by the $d$-dimensional torus of side length $L$. Initially, no sites have mutations, but sites with $i-1$ mutations acquire an $i$th mutation at rate $μ_i$ per unit area. Mutations spread to neighboring sites at rate $α$, so that $t$ time units after a mutation, the region of individuals that have acquired the mutation will be a ball of radius $αt$. We calculate, for some ranges of the parameter values, the asymptotic distribution of the time required for some individual to acquire $k$ mutations. Our results, which build on previous work of Durrett, Foo, and Leder, are essentially complete when $k = 2$ and when $μ_i = μ$ for all $i$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源