论文标题

雷利·贝纳德对流的平行整合表现

Performance of parallel-in-time integration for Rayleigh Bénard Convection

论文作者

Clarke, Andrew, Davies, Chris, Ruprecht, Daniel, Tobias, Steven, Oishi, Jeffrey S.

论文摘要

雷利 - 贝纳德对流(RBC)是流体动力学的基本问题,在地球物理,天体物理和工业流中有许多应用。在利益的参数方面了解RBC需要复杂的物理或数值实验。数值模拟需要大量的计算资源;为了更有效地使用现在在大型高性能计算集群中可用的大量处理器,需要新的并行化策略。为此,我们研究了在RBC的数值模拟中使用时平行算法瘫痪的性能。我们介绍了有限PRANDTL编号的RBC模拟的第一个并行时间加速。我们还研究了瘫痪相对于统计数值数量(例如Nusselt编号)的收敛问题,并讨论了在这些情况下可靠的在线停止标准的重要性。

Rayleigh-Bénard convection (RBC) is a fundamental problem of fluid dynamics, with many applications to geophysical, astrophysical, and industrial flows. Understanding RBC at parameter regimes of interest requires complex physical or numerical experiments. Numerical simulations require large amounts of computational resources; in order to more efficiently use the large numbers of processors now available in large high performance computing clusters, novel parallelisation strategies are required. To this end, we investigate the performance of the parallel-in-time algorithm Parareal when used in numerical simulations of RBC. We present the first parallel-in-time speedups for RBC simulations at finite Prandtl number. We also investigate the problem of convergence of Parareal with respect to to statistical numerical quantities, such as the Nusselt number, and discuss the importance of reliable online stopping criteria in these cases.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源