论文标题
平均场方程和第一类的域
Mean field equations and domains of first kind
论文作者
论文摘要
在本文中,我们有兴趣了解第一和第二类领域的结构,这是由统计力学问题引起的概念。我们证明了关于合适拓扑的第一类域的一些开放性属性,以及在Riemann Map的傅立叶系数方面,简单连接的域是第一类的足够条件。最后,我们证明了第一类简单的连接域是可签约的。
In this paper we are interested in understanding the structure of domains of first and second kind, a concept motivated by problems in statistical mechanics. We prove some openness property for domains of first kind with respect to a suitable topology, as well as some sufficient condition for a simply connected domain to be of first kind in terms of the Fourier coefficients of the Riemann map. Finally, we show that the set of simply connected domains of first kind is contractible.