论文标题

关于完整三方图的最佳取向

On optimal orientations of complete tripartite graphs

论文作者

Wong, W. H. W., Tay, E. G.

论文摘要

给定一个连接且无用的图形$ g $,让$ \ mathscr {d}(g)$是$ g $的强向族的家族。 $ g $的方向数定义为$ \ bar {d}(g):= min \ {d(d)| d \ in \ mathscr {d}(g)\} $,其中$ d(d(d)$是digraph $ d $的直径。在本文中,我们关注完整三方图的方向数量。我们证明了Rajasekaran和Sampathkumar提出的猜想。具体而言,对于$ q \ ge p \ ge 3 $,如果$ \ bar {d}(k(2,p,q))= 2 $,则$ q \ le {{p} \ select {\ lfloor {\ lfloor {p/2} \ rfloor}}} $。我们还向$ p $和$ q $呈现一些足够的条件,for $ \ bar {d}(k(p,p,q))= 2 $。

Given a connected and bridgeless graph $G$, let $\mathscr{D}(G)$ be the family of strong orientations of $G$. The orientation number of $G$ is defined to be $\bar{d}(G):=min\{d(D)|D\in \mathscr{D}(G)\}$, where $d(D)$ is the diameter of the digraph $D$. In this paper, we focus on the orientation number of complete tripartite graphs. We prove a conjecture raised by Rajasekaran and Sampathkumar. Specifically, for $q\ge p\ge 3$, if $\bar{d}(K(2,p,q))=2$, then $q\le{{p}\choose{\lfloor{p/2}\rfloor}}$. We also present some sufficient conditions on $p$ and $q$ for $\bar{d}(K(p,p,q))=2$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源