论文标题

CONSAC:有条件样品共识的鲁棒多模型拟合

CONSAC: Robust Multi-Model Fitting by Conditional Sample Consensus

论文作者

Kluger, Florian, Brachmann, Eric, Ackermann, Hanno, Rother, Carsten, Yang, Michael Ying, Rosenhahn, Bodo

论文摘要

我们提出了一个可靠的估计器,用于将同一形式的多个参数模型拟合到嘈杂的测量值。应用程序包括在人造场景中找到多个消失的点,将平面拟合到架构图像,或估计同一序列中的多个刚性运动。与以前的工作相反,该作品诉诸于手工制作的搜索策略以进行多个模型检测,我们从数据中学习了搜索策略。以先前检测到的模型为条件的神经网络将RANSAC估计器引导到所有测量的不同子集中,从而在一个接一个地找到模型实例。我们训练受监督的方法以及自我监督。为了监督搜索策略的培训,我们为消失的估算贡献了一个新的数据集。在利用此数据集的情况下,提出的算法相对于其他可靠的估计器以及指定的消失点估计算法优越。对于搜索的自我监督学习,我们评估了有关多态摄影估计的提出算法,并证明了一种优于最新方法的精度。

We present a robust estimator for fitting multiple parametric models of the same form to noisy measurements. Applications include finding multiple vanishing points in man-made scenes, fitting planes to architectural imagery, or estimating multiple rigid motions within the same sequence. In contrast to previous works, which resorted to hand-crafted search strategies for multiple model detection, we learn the search strategy from data. A neural network conditioned on previously detected models guides a RANSAC estimator to different subsets of all measurements, thereby finding model instances one after another. We train our method supervised as well as self-supervised. For supervised training of the search strategy, we contribute a new dataset for vanishing point estimation. Leveraging this dataset, the proposed algorithm is superior with respect to other robust estimators as well as to designated vanishing point estimation algorithms. For self-supervised learning of the search, we evaluate the proposed algorithm on multi-homography estimation and demonstrate an accuracy that is superior to state-of-the-art methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源