论文标题
脑电图中各向异性正向问题的混合体积表面线积分方程
A Hybrid Volume-Surface-Wire Integral Equation for the Anisotropic Forward Problem in Electroencephalography
论文作者
论文摘要
解决脑电图(EEG)正向问题是在广泛应用中的基本步骤,包括基于逆源定位的生物医学成像技术。最先进的电磁求解器诉诸于整个头部的计算昂贵的容量离散化,以说明其复杂且异质的电气轮廓。更有效的是在生物医学成像圈中流行的,但不幸的是过度简化边界元素方法(BEM)取决于分段 - 均匀的近似值,该近似严重地遏制了其在高分辨率EEG中的应用。这项贡献通过用足够的电线和薄体积积分方程处理局部各向异性来提高标准的BEM违反,这些方程是针对纤维白质和不均匀颅骨的特定结构量身定制的。因此,提出的混合积分方程式公式避免了头部培养基的完整体积离散化,并允许对各向异性EEG远期问题的现实有效的BEM样解决方案。通过涉及规范和逼真的基于MRI的头模型的数值实验证明了所提出的公式的准确性和灵活性。
Solving the electroencephalography (EEG) forward problem is a fundamental step in a wide range of applications including biomedical imaging techniques based on inverse source localization. State-of-the-art electromagnetic solvers resort to a computationally expensive volumetric discretization of the full head to account for its complex and heterogeneous electric profile. The more efficient, popular in biomedical imaging circles, but unfortunately oversimplifying Boundary Element Method (BEM) relies instead on a piecewise-uniform approximation that severely curbs its application in high resolution EEGs. This contribution lifts the standard BEM contraints by treating the local anisotropies with adequate wire and thin volume integral equations that are tailored to specific structures of the fibrous white matter and the inhomogeneous skull. The proposed hybrid integral equation formulation thereby avoids the full volumetric discretization of the head medium and allows for a realistic and efficient BEM-like solution of the anisotropic EEG forward problem. The accuracy and flexibility of the proposed formulation is demonstrated through numerical experiments involving both canonical and realistic MRI-based head models.