论文标题

通过跟踪兴趣进化来进行点击率预测的深度时间流框架

Deep Time-Stream Framework for Click-Through Rate Prediction by Tracking Interest Evolution

论文作者

Shi, Shu-Ting, Zheng, Wenhao, Tang, Jun, Chen, Qing-Guo, Hu, Yao, Zhu, Jianke, Li, Ming

论文摘要

点击率(CTR)预测是工业应用(例如视频推荐)的重要任务。最近,已经提出了深度学习模型来学习用户整体兴趣的表示,同时忽略了利益可能会随着时间而动态变化的事实。我们认为有必要考虑CTR模型中的连续时间信息,以跟踪丰富历史行为的用户兴趣趋势。在本文中,我们提出了一个新颖的深度时间流框架(DTS),该框架通过普通的微分方程(ODE)介绍了时间信息。 DTS使用神经网络不断建模兴趣的演变,因此能够根据其历史行为来应对动态代表用户兴趣的挑战。此外,我们的框架可以通过利用额外的时间流模块来无缝地应用于任何现有的深CTR模型,而对原始CTR模型没有更改。公共数据集以及具有数十亿个样本的实际行业数据集的实验证明了拟议方法的有效性,与现有方法相比,实现了卓越的性能。

Click-through rate (CTR) prediction is an essential task in industrial applications such as video recommendation. Recently, deep learning models have been proposed to learn the representation of users' overall interests, while ignoring the fact that interests may dynamically change over time. We argue that it is necessary to consider the continuous-time information in CTR models to track user interest trend from rich historical behaviors. In this paper, we propose a novel Deep Time-Stream framework (DTS) which introduces the time information by an ordinary differential equations (ODE). DTS continuously models the evolution of interests using a neural network, and thus is able to tackle the challenge of dynamically representing users' interests based on their historical behaviors. In addition, our framework can be seamlessly applied to any existing deep CTR models by leveraging the additional Time-Stream Module, while no changes are made to the original CTR models. Experiments on public dataset as well as real industry dataset with billions of samples demonstrate the effectiveness of proposed approaches, which achieve superior performance compared with existing methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源