论文标题
通过知识蒸馏不成对的多模式分割
Unpaired Multi-modal Segmentation via Knowledge Distillation
论文作者
论文摘要
多模式学习通常使用包含特定于模态层和共享层的网络体系结构进行,并利用不同模态的共同注册图像。我们提出了一种新颖的学习方案,用于未配对的跨模式图像分割,具有高度紧凑的架构可实现出色的分割精度。在我们的方法中,我们通过在CT和MRI上共享所有卷积内核来大力重复使用网络参数,并且仅采用特定于模态的内部归一化层来计算各自的统计数据。为了有效地训练这样一个高度紧凑的模型,我们通过明确限制模式之间我们派生的预测分布的KL差异来引入一个受知识蒸馏启发的新型损失术语。我们已经对两个多类分割问题进行了广泛验证的方法:i)心脏结构分割,ii)腹部器官分割。不同的网络设置,即2D扩张的网络和3D U-NET,用于研究我们方法的一般疗效。两项任务的实验结果表明,我们的新型多模式学习方案始终优于单模式训练和以前的多模式方法。
Multi-modal learning is typically performed with network architectures containing modality-specific layers and shared layers, utilizing co-registered images of different modalities. We propose a novel learning scheme for unpaired cross-modality image segmentation, with a highly compact architecture achieving superior segmentation accuracy. In our method, we heavily reuse network parameters, by sharing all convolutional kernels across CT and MRI, and only employ modality-specific internal normalization layers which compute respective statistics. To effectively train such a highly compact model, we introduce a novel loss term inspired by knowledge distillation, by explicitly constraining the KL-divergence of our derived prediction distributions between modalities. We have extensively validated our approach on two multi-class segmentation problems: i) cardiac structure segmentation, and ii) abdominal organ segmentation. Different network settings, i.e., 2D dilated network and 3D U-net, are utilized to investigate our method's general efficacy. Experimental results on both tasks demonstrate that our novel multi-modal learning scheme consistently outperforms single-modal training and previous multi-modal approaches.