论文标题
对BESOV空间中Euler方程的初始数据的初始数据的不均匀依赖性
Non-uniform dependence on initial data for the Euler equations in Besov spaces
论文作者
论文摘要
在本文中,我们将最初的值问题考虑到整个空间中较高维度的Euler方程。基于在\ cite {li2}中开发的新技术,我们证明了该问题的数据到解决方案映射在Hadamard的意义上在非均匀的BESOV空间中并不统一。我们获得的结果大大改善了Pastrana \ Cite {Pastrana}的最新结果。
In the paper, we consider the initial value problem to the higher dimensional Euler equations in the whole space. Based on the new technical which is developed in \cite{Li2}, we proved that the data-to-solution map of this problem is not uniformly continuous in nonhomogeneous Besov spaces in the sense of Hadamard. Our obtained result improves considerably the recent result given by Pastrana \cite{Pastrana}.