论文标题
主要序列星的潮汐破坏-II。全潮中断特征的模拟方法和出色的质量依赖性
Tidal disruptions of main sequence stars -- II. Simulation methodology and stellar mass dependence of the character of full tidal disruptions
论文作者
论文摘要
这是一系列论文中的第二篇,介绍了恒星潮汐中断的完全相对论模拟的结果,其中恒星的初始状态是现实的主要序列模型。在第一篇论文(论文I)中,我们概述了该计划,并讨论了我们工作的主要观察含义。在这里,我们描述了我们的计算方法,并提供了有关完全中断结果的详细信息,重点是质量$ 10^{6} {6} \ rm {m} _ {\ odot} $的黑洞的结果的出色质量依赖性。我们考虑八个不同的恒星质量,从$ 0.15〜 {\ rm m} _ \ odot $到$ 10〜 {\ rm m} _ \ odot $。我们发现,相对于传统的静态估算$ r _ {\ rm t} $,低质量星星的物理潮汐半径($ m _ {\ star} \ sillesim 0.7〜 {\ rm m} _ \ odot $)是较大的,而高度mass的星星则更大,而$ m _ _ _ = {\ rm m} _ \ odot $)它的较小,而要素2--2.5。对于低质量恒星而言,对碎片中发现的能量范围的传统估计约为$ \ times $太大,但对于高质量恒星而言是一个因子$ \ sim 2 $。此外,高质量恒星的能量分布具有明显的翅膀。对于所有经历了潮汐遭遇的恒星,我们发现大量损失在许多恒星振动时间内仍在继续,因为黑洞的潮汐重力与恒星表面的瞬时恒星重力竞争,直到恒星距离黑洞$ \ sim o(10)r _ {\ rm t} $。
This is the second in a series of papers presenting the results of fully general relativistic simulations of stellar tidal disruptions in which the stars' initial states are realistic main-sequence models. In the first paper (Paper I), we gave an overview of this program and discussed the principal observational implications of our work. Here we describe our calculational method and provide details about the outcomes of full disruptions, focusing on the stellar mass dependence of the outcomes for a black hole of mass $10^{6}\rm{M}_{\odot}$. We consider eight different stellar masses, from $0.15~{\rm M}_\odot$ to $10~{\rm M}_\odot$. We find that, relative to the traditional order-of-magnitude estimate $r_{\rm t}$, the physical tidal radius of low-mass stars ($M_{\star} \lesssim 0.7~ {\rm M}_\odot$) is larger by tens of percent, while for high-mass stars ($M_{\star} \gtrsim1~ {\rm M}_\odot$) it is smaller by a factor 2--2.5. The traditional estimate of the range of energies found in the debris is $\approx 1.4\times$ too large for low-mass stars, but is a factor $\sim 2$ too small for high-mass stars; in addition, the energy distribution for high-mass stars has significant wings. For all stars undergoing tidal encounters, we find that mass-loss continues for many stellar vibration times because the black hole's tidal gravity competes with the instantaneous stellar gravity at the star's surface until the star has reached a distance from the black hole $\sim O(10)r_{\rm t}$.