论文标题

dudornet:学习一个双域重复网络,用于快速MRI重建,深层T1先验

DuDoRNet: Learning a Dual-Domain Recurrent Network for Fast MRI Reconstruction with Deep T1 Prior

论文作者

Zhou, Bo, Zhou, S. Kevin

论文摘要

具有多个方案的MRI通常用于诊断,但遭受了较长的收集时间,这产生了图像质量很容易说运动伪影。为了加速,已经提出了各种方法来从采样不足的K空间数据中重建完整图像。但是,这些算法是由于两个主要原因而不足的。首先,在图像域中产生的混叠伪影是结构性和非本地的,因此唯一的图像域恢复不足。其次,尽管MRI在一项考试中包含多个方案,但几乎所有以前的研究都仅使用高度扭曲的不采样图像作为输入来重建单个协议,而将完全采样的短方案(例如T1)作为互补信息,将其用作互补的信息。在这项工作中,我们通过提出一个具有深层T1的双域重复网络(Dudornet)来解决上述两个限制,以同时恢复K空间和图像,以加速使用长成像协议加速MRI的获取。具体而言,扩张的残留密度网络(DRDNET)是根据未采样的MRI数据来定制的。对不同采样模式和加速度率的广泛实验表明,我们的方法始终超过最先进的方法,并且可以重建高质量的MRI。

MRI with multiple protocols is commonly used for diagnosis, but it suffers from a long acquisition time, which yields the image quality vulnerable to say motion artifacts. To accelerate, various methods have been proposed to reconstruct full images from under-sampled k-space data. However, these algorithms are inadequate for two main reasons. Firstly, aliasing artifacts generated in the image domain are structural and non-local, so that sole image domain restoration is insufficient. Secondly, though MRI comprises multiple protocols during one exam, almost all previous studies only employ the reconstruction of an individual protocol using a highly distorted undersampled image as input, leaving the use of fully-sampled short protocol (say T1) as complementary information highly underexplored. In this work, we address the above two limitations by proposing a Dual Domain Recurrent Network (DuDoRNet) with deep T1 prior embedded to simultaneously recover k-space and images for accelerating the acquisition of MRI with a long imaging protocol. Specifically, a Dilated Residual Dense Network (DRDNet) is customized for dual domain restorations from undersampled MRI data. Extensive experiments on different sampling patterns and acceleration rates demonstrate that our method consistently outperforms state-of-the-art methods, and can reconstruct high-quality MRI.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源