论文标题
$ u(\ Mathfrak {o}(\ infty))的原始理想的分类和$ u(\ mathfrak {sp}(\ infty))$
Classification of primitive ideals of $U(\mathfrak{o}(\infty))$ and $U(\mathfrak{sp}(\infty))$
论文作者
论文摘要
该博士的目的论文是研究和分类包络代数$ u(\ mathfrak {o}(\ infty)))$和$ u(\ mathfrak {sp}(\ infty))$的原始理想。令$ \ mathfrak {g}(\ infty)$表示任何lie代数$ \ mathfrak {o}(\ infty)$或$ \ mathfrak {sp}(\ infty)$。然后\ break $ \ \ \ m athfrak {g}(\ infty)= \ bigCup_ {n \ geq 2} \ mathfrak {g}(2n)$ for $ \ m athfrak {g}(g}(g}(2n)= \ mathfrak 分别。我们表明,每一个原始的理想$ i $ $ $ $ $ $ u(\ mathfrak {g}(\ infty))$都是弱限制的,即$ i \ cap u(\ mathfrak {g}(2n))$等同于有界重量$ \ mathfrak {g}(g}(g}(2n)$ modes $ mod的nihihilihilihilihilators的交叉点。对于每一个原始的理想$ i $ $ \ mathfrak {g}(\ infty)$,我们附加了一个独特的不可约合的一致的本地理想的本地系统,这是一个有限维模块的连贯局部系统的类似物,如先前由A. Zhilinskii引入的。结果,$ u(\ mathfrak {g}(\ infty))$的原始理想是由Triples $(x,y,z)$参数化的,其中$ x $是一个非负整数,$ y $是一种非阴性的integer或half half half-integer或half half-integer,$ z $是$ z $的年轻图。在$ \ mathfrak {o}(\ infty)$的情况下,每个原始理想都是可集成的,我们的分类减少了可回到A. Zhilinskii,A。Penkov和I. Petukhov的可集成理想的分类。在$ \ mathfrak {sp}(\ infty)$的情况下,只有“一半”的原始理想是可以集成的,而不可集成的原始理想对应于三倍$(x,y,z)$,其中$ y $是半数的。
The purpose of this Ph.D. thesis is to study and classify primitive ideals of the enveloping algebras $U(\mathfrak{o}(\infty))$ and $U(\mathfrak{sp}(\infty))$. Let $\mathfrak{g}(\infty)$ denote any of the Lie algebras $\mathfrak{o}(\infty)$ or $\mathfrak{sp}(\infty)$. Then\break $\mathfrak{g}(\infty)=\bigcup_{n\geq 2} \mathfrak{g}(2n)$ for $\mathfrak{g}(2n)=\mathfrak{o}(2n)$ or $\mathfrak{g}(2n)=\mathfrak{sp}(2n)$, respectively. We show that each primitive ideal $I$ of $U(\mathfrak{g}(\infty))$ is weakly bounded, i.e., $I\cap U(\mathfrak{g}(2n))$ equals the intersection of annihilators of bounded weight $\mathfrak{g}(2n)$-modules. To every primitive ideal $I$ of $\mathfrak{g}(\infty)$ we attach a unique irreducible coherent local system of bounded ideals, which is an analog of a coherent local system of finite-dimensional modules, as introduced earlier by A. Zhilinskii. As a result, primitive ideals of $U(\mathfrak{g}(\infty))$ are parametrized by triples $(x,y,Z)$ where $x$ is a nonnegative integer, $y$ is a nonnegative integer or half-integer, and $Z$ is a Young diagram. In the case of $\mathfrak{o}(\infty)$, each primitive ideal is integrable, and our classification reduces to a classification of integrable ideals going back to A. Zhilinskii, A. Penkov and I. Petukhov. In the case of $\mathfrak{sp}(\infty)$, only 'half' of the primitive ideals are integrable, and nonintegrable primitive ideals correspond to triples $(x,y,Z)$ where $y$ is a half-integer.