论文标题
使用自动机的Herzog-Schönheim猜想的方法
An approach to the Herzog-Schönheim conjecture using automata
论文作者
论文摘要
令$ g $为一个组,$ h_1 $,...,$ h_s $是$ g $ in Indices $ d_1 $,...,$ d_s $的子组。 1974年,M。Herzog和J.Schönheim认为,如果$ \ {h_iα_i\} _ {i = 1}^{i = s} $,$α_i\ in G $,是$ g $的coset分区,那么$ d_1 $,$ d_1 $,..,$ d_s $是不同的。在本文中,我们提出了一种基于自动机的Herzog-Schönheim猜想的新方法,并将猜想作为自动机上的问题的翻译。
Let $G$ be a group and $H_1$,...,$H_s$ be subgroups of $G$ of indices $d_1$,...,$d_s$ respectively. In 1974, M. Herzog and J. Schönheim conjectured that if $\{H_iα_i\}_{i=1}^{i=s}$, $α_i\in G$, is a coset partition of $G$, then $d_1$,..,$d_s$ cannot be distinct. In this paper, we present a new approach to the Herzog-Schönheim conjecture based on automata and present a translation of the conjecture as a problem on automata.