论文标题

您可以使用独立于竞技场的有限内存来最佳玩游戏的游戏

Games Where You Can Play Optimally with Arena-Independent Finite Memory

论文作者

Bouyer, Patricia, Roux, Stéphane Le, Oualhadj, Youssouf, Randour, Mickael, Vandenhove, Pierre

论文摘要

几十年来,图表上的两人游戏(对立)游戏一直是理论计算机科学中许多重要问题的首选框架。臭名昭著的是控制器的综合,可以通过游戏理论隐喻来改写,作为在游戏对抗其对抗环境中制定系统的胜利策略的追求。根据规范的不同,最佳策略可能很简单或非常复杂,例如必须使用(可能是无限)内存。因此,研究致力于了解哪些设置允许简单的策略。 2005年,Gimbert和Zielonka提供了偏好关系(模型规范和游戏目标的正式框架)的完整表征,该框架为这两个参与者提供了无内存的最佳策略。然而,在过去的十五年中,实际应用使社区朝着具有复杂或多个目标的游戏迈进,几乎总是需要记忆(有限或无限)。尽管付出了很多努力,但承认有限的内存最佳策略的偏好关系类别的确切边界仍然避免了我们。 在这项工作中,我们建立了偏好关系的完整表征,该偏好关系使用独立的有限记忆来接受最佳策略,从而将Gimbert和Zielonka的工作推广到有限的记忆案例。我们还证明了他们对实践兴趣的著名推论:如果两个玩家在所有单人游戏中都有最佳的(独立于竞技场的)有限记忆策略,那么在所有两人游戏中,这也是如此。最后,我们指出了关于文献的结果的界限:我们的工作完全涵盖了独立于竞技场的记忆(例如,多个奇偶元目标,下层和上层能的能量目标),并为竞技场依赖性情况铺平了道路(例如,多个低结合的能源目标)。

For decades, two-player (antagonistic) games on graphs have been a framework of choice for many important problems in theoretical computer science. A notorious one is controller synthesis, which can be rephrased through the game-theoretic metaphor as the quest for a winning strategy of the system in a game against its antagonistic environment. Depending on the specification, optimal strategies might be simple or quite complex, for example having to use (possibly infinite) memory. Hence, research strives to understand which settings allow for simple strategies. In 2005, Gimbert and Zielonka provided a complete characterization of preference relations (a formal framework to model specifications and game objectives) that admit memoryless optimal strategies for both players. In the last fifteen years however, practical applications have driven the community toward games with complex or multiple objectives, where memory -- finite or infinite -- is almost always required. Despite much effort, the exact frontiers of the class of preference relations that admit finite-memory optimal strategies still elude us. In this work, we establish a complete characterization of preference relations that admit optimal strategies using arena-independent finite memory, generalizing the work of Gimbert and Zielonka to the finite-memory case. We also prove an equivalent to their celebrated corollary of great practical interest: if both players have optimal (arena-independent-)finite-memory strategies in all one-player games, then it is also the case in all two-player games. Finally, we pinpoint the boundaries of our results with regard to the literature: our work completely covers the case of arena-independent memory (e.g., multiple parity objectives, lower- and upper-bounded energy objectives), and paves the way to the arena-dependent case (e.g., multiple lower-bounded energy objectives).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源