论文标题

某些双曲线4个manifolds的代数振动

Algebraic fibrations of certain hyperbolic 4-manifolds

论文作者

Ma, Jiming, Zheng, Fangting

论文摘要

代数纤维组是对较高维度的纤维3型脉络膜组的代数概括。令$ m(\ Mathcal {p})$和$ m(\ Mathcal {e})$为与多双曲右角的24-Cell $ \ Mathcal $ \ Mathcal {p} $相关的强度和紧凑的双曲线真实的瞬间角歧管,并且是超轻的右手右右手右右手$ \ Mathcal $ \ Mathcal} $} jankiewicz-norin wise在[13]中表明,$π_1(m(\ mathcal {p})))$和$π_1(m(\ mathcal {e}))$是代数纤维。也就是说,有两个确切的序列$$ 1 \ rightArrow h _ {\ Mathcal {p}} \rightArolowπ_1(m(\ Mathcal {p}))\ xrightArrow {\ xrightArrow {\ x _ { h _ {\ Mathcal {e}} \rightarrowπ_1(m(\ Mathcal {e})))\ xrightArrow {ϕ _ {\ m nathcal {\ Mathcal {e}}}}}}} \ Mathbb {z} $ h _ {\ Mathcal {e}} $有限生成。在本文中,我们进一步表明$ h _ {\ Mathcal {p}} $和$ h _ {\ Mathcal {e}} $不是$ fp_2 $。特别是,这些纤维内核组是有限生成的,但没有有限的呈现。

Algebraically fibering group is an algebraic generalization of the fibered 3-manifold group in higher dimensions. Let $M(\mathcal{P})$ and $M(\mathcal{E})$ be the cusped and compact hyperbolic real moment-angled manifolds associated to the hyperbolic right-angled 24-cell $\mathcal{P}$ and the hyperbolic right-angled 120-cell $\mathcal{E}$, respectively. Jankiewicz-Norin-Wise showed in [13] that $π_1(M(\mathcal{P}))$ and $π_1(M(\mathcal{E}))$ are algebraic fibered. Namely, there are two exact sequences $$1\rightarrow H_{\mathcal{P}}\rightarrow π_1(M(\mathcal{P}))\xrightarrow{ϕ_{\mathcal{P}}} \mathbb{Z}\rightarrow 1,$$ $$1\rightarrow H_{\mathcal{E}}\rightarrow π_1(M(\mathcal{E}))\xrightarrow{ϕ_{\mathcal{E}}} \mathbb{Z}\rightarrow 1,$$ where $H_{\mathcal{P}}$ and $H_{\mathcal{E}}$ are finitely generated. In this paper, we furtherly show that the groups $H_{\mathcal{P}}$ and $H_{\mathcal{E}}$ are not $FP_2$. In particular, those fiber-kernel groups are finitely generated, but not finitely presented.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源