论文标题
在软蛇机器人中学习使用深神经网络和基于CPG的控制
Learning to Locomote with Deep Neural-Network and CPG-based Control in a Soft Snake Robot
论文作者
论文摘要
在本文中,我们提出了一种用于软机器人蛇的新运动控制方法。受到生物蛇的启发,我们的控制架构由两个关键模块组成:深入增强学习(RL)模块,用于实现具有变化目标的自适应目标跟踪行为,以及具有Matsuoka振荡器的中央模式生成器(CPG)系统,用于产生稳定和不同的运动模式。这两个模块互连到闭环系统:RL模块,类似于位于脊椎动物中部脑中的运动区域,调节给出了来自机器人的状态反馈的CPG系统的输入。然后将CPG系统的输出转换为压力输入到软蛇机器人的气动执行器。基于Matsuoka振荡器的振荡频率和波幅度可以在不同的时间尺度下独立控制,我们进一步适应了选项批判性的框架,以提高通过最佳和数据效率衡量的学习绩效。通过模拟和真实的软蛇机器人对所提出的控制器的性能进行了实验验证。
In this paper, we present a new locomotion control method for soft robot snakes. Inspired by biological snakes, our control architecture is composed of two key modules: A deep reinforcement learning (RL) module for achieving adaptive goal-tracking behaviors with changing goals, and a central pattern generator (CPG) system with Matsuoka oscillators for generating stable and diverse locomotion patterns. The two modules are interconnected into a closed-loop system: The RL module, analogizing the locomotion region located in the midbrain of vertebrate animals, regulates the input to the CPG system given state feedback from the robot. The output of the CPG system is then translated into pressure inputs to pneumatic actuators of the soft snake robot. Based on the fact that the oscillation frequency and wave amplitude of the Matsuoka oscillator can be independently controlled under different time scales, we further adapt the option-critic framework to improve the learning performance measured by optimality and data efficiency. The performance of the proposed controller is experimentally validated with both simulated and real soft snake robots.