论文标题

使用大型多主体P300数据集评估卷积神经网络

Evaluation of convolutional neural networks using a large multi-subject P300 dataset

论文作者

Vareka, Lukas

论文摘要

深度神经网络(DNN)已在各个机器学习领域进行了研究。例如,事件相关电位(ERP)信号分类是一个高度复杂的任务,可能适合DNN,因为信噪比较低,并且基本的空间和时间模式显示出较大的内部和主体间可变性。卷积神经网络(CNN)已与基线传统模型,即线性判别分析(LDA)和支持向量机器(SVM)进行单次试验分类,使用大型多种受试者公开可用的P300 P300 P300数据集(138名男性和112名女性)。对于单个试验分类,对于所有测试的分类模型,分类准确性保持在62%至64%之间。将训练有素的分类模型应用于平均试验时,精度提高到76-79%,而分类模型之间没有显着差异。对于测试的数据集,CNN并未证明优于基线。讨论了与相关文献,局限性和未来方向的比较。

Deep neural networks (DNN) have been studied in various machine learning areas. For example, event-related potential (ERP) signal classification is a highly complex task potentially suitable for DNN as signal-to-noise ratio is low, and underlying spatial and temporal patterns display a large intra- and intersubject variability. Convolutional neural networks (CNN) have been compared with baseline traditional models, i.e. linear discriminant analysis (LDA) and support vector machines (SVM) for single trial classification using a large multi-subject publicly available P300 dataset of school-age children (138 males and 112 females). For single trial classification, classification accuracy stayed between 62% and 64% for all tested classification models. When applying the trained classification models to averaged trials, accuracy increased to 76-79% without significant differences among classification models. CNN did not prove superior to baseline for the tested dataset. Comparison with related literature, limitations and future directions are discussed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源