论文标题
Orbifold顶点操作员代数$ l _ {\ wideHat {\ frak {sl} _2}}}}(k,0)^{\ mathbb {z} _3} $
Representations and fusion rules for the orbifold vertex operator algebras $L_{\widehat{\frak{sl}_2}}(k,0)^{\mathbb{Z}_3}$
论文作者
论文摘要
对于环状组$ \ mathbb {z} _3 $和正整数$ k $,我们研究Orbifold顶点操作员Algebra $ l _ {\ wideHat {\ Mathfrak {\ Mathfrak {sl} _2}}}}}(k,0) $ l _ {\ wideHat {\ Mathfrak {sl} _2}}}}}}}}}^{\ Mathbb {z} _3} $的所有不可减至的模块均被分类并明确地构造。 Orbifold顶点操作员代数$ l _ {\ wideHat {\ Mathfrak {\ Mathfrak {sl} _2}}}}}(k,0)^{\ Mathbb {z} _3 _3} $的量子维数和融合规则。
For the cyclic group $\mathbb{Z}_3$ and positive integer $k$, we study the representations of the orbifold vertex operator algebra $L_{\widehat{\mathfrak{sl}_2}}(k,0)^{\mathbb{Z}_3}$. All the irreducible modules for $L_{\widehat{\mathfrak{sl}_2}}(k,0)^{\mathbb{Z}_3}$ are classified and constructed explicitly. Quantum dimensions and fusion rules for the orbifold vertex operator algebra $L_{\widehat{\mathfrak{sl}_2}}(k,0)^{\mathbb{Z}_3}$ are completely determined.