论文标题

逆连续性的多个方面

Multiple facets of inverse continuity

论文作者

Dolecki, Szymon

论文摘要

各种包含物的反转,这些包含物是拓扑空间中连续性的特征,从而导致了许多商和完美地图的变体。在融合的框架中,上述夹杂物不再等效,并且每个包裹都表征了不同反射性融合子类别中的连续性。另一方面,事实证明,相对于这些子类别,提到的商和完美地图的变体是商和完美的地图。这种观点使在与商和完美地图相关的任务中使用收敛理论工具,从而大大简化了传统方法。在拓扑框架中,类似的技术将不可思议。

Inversion of various inclusions, that characterize continuity in topological spaces, results in numerous variants of quotient and perfect maps. In the framework of convergences, the said inclusions are no longer equivalent, and each of them characterizes continuity in a different concretely reflective subcategory of convergences. On the other hand, it turns out that the mentioned variants of quotient and perfect maps are quotient and perfect maps with respect to these subcategories. This perspective enables use of convergence-theoretic tools in quests related to quotient and perfect maps, considerably simplifying the traditional approach. Similar techniques would be unconceivable in the framework of topologies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源