论文标题
超导体中自旋依赖性能量传输的证据
Evidence for spin-dependent energy transport in a superconductor
论文作者
论文摘要
在正常金属和超导体的自旋能激发模式下,上下电子(或准粒子)带有不同的热电流。仅当旋转和下向上和向下的能量分布函数是非相同的,最简单的是,当两个旋转具有不同的有效温度时,并且可以通过自旋偏振电流注入到系统时激发。虽然在正常金属中观察到了自旋依赖性热传输的证据,但这些测量值平均在电子的分布功能上。通过在肠镜超导体中对准粒子群的光谱进行光谱,我们揭示了分布功能,这些函数强烈平衡,即非fermi-dirac。此外,与普通金属不同,超导体中的自旋能模式与有限的zeeman磁场中的超导间隙边缘处的电荷不平衡(不同数量的孔和电子样式粒子)相关。我们的光谱技术使我们能够观察到这种电荷不平衡,从而明确地识别自旋能模式。我们的结果与理论非常吻合,并有助于用超导体为旋转热量的基础奠定基础。
In the spin energy excitation mode of normal metals and superconductors, spin up and down electrons (or quasiparticles) carry different heat currents. This mode occurs only when spin up and down energy distribution functions are non-identical, most simply when the two spins have different effective temperatures, and can be excited by spin-polarised current injection into the system. While evidence for spin-dependent heat transport has been observed in a normal metal, these measurements averaged over the distribution function of the electrons. By performing spectroscopy of quasiparticle populations in a mescoscopic superconductor, we reveal distribution functions which are strongly out-of-equilibrium, i.e. non-Fermi-Dirac. In addition, unlike in normal metals, the spin energy mode in superconductors is associated with a charge imbalance (different numbers of hole- and electron-like quasiparticles) at the superconducting gap edge, in finite Zeeman magnetic fields. Our spectroscopic technique allows us to observe this charge imbalance and thus unambiguously identify the spin energy mode. Our results agree well with theory and contribute to laying the foundation for spin caloritronics with superconductors.