论文标题

耗散性玻璃剂约瑟夫森连接中的参数振荡

Parametric oscillations in a dissipative bosonic Josephson junction

论文作者

Saha, Abhik Kumar, Ray, Deb Shankar, Deb, Bimalendu

论文摘要

我们研究了非线性耗散性玻璃剂约瑟夫森结(BJJ)的动力学,其相互作用项中具有时间依赖性正弦扰动。我们证明了参数共振,即使在存在耗散的情况下,系统也会经历持续的周期性振荡。当扰动的频率接近未扰动的约瑟夫森振荡频率的两倍,并且扰动的强度超过了临界阈值。我们已经制定了参数振荡的阈值条件。为了探索振荡的性质,我们根据参数空间中的V形Arnold的舌头对稳定性边界进行了多个时间尺度分析。已经对非线性约瑟夫森效应的零,运行和$π$ - 相模式进行了完整的数值模拟。我们的结果表明,在$π$相模式下,系统能够在越过稳定性边界时从常规参数到混乱的参数振荡过渡。同样,在执行持续参数振荡之前,相位差会经历相位滑动。

We study the dynamics of a nonlinear dissipative bosonic Josephson junction (BJJ) with a time-dependent sinusoidal perturbation in interaction term. We demonstrate parametric resonance where the system undergoes sustained periodic oscillations even in the presence of dissipation. This happens when the frequency of the perturbation is close to twice the frequency of the unperturbed Josephson oscillations and the strength of perturbation exceeds a critical threshold. We have formulated the threshold conditions for parametric oscillations. To explore the nature of the oscillations, we carry out a multiple time scale analysis of the stability boundaries in terms of the V-shaped Arnold's tongue in the parameter space. Full numerical simulations have been performed for the zero-, running- and $π$-phase modes of nonlinear Josephson effect. Our results demonstrate that in $π$-phase mode, the system is capable of making a transition from regular parametric to chaotic parametric oscillations as one crosses the stability boundary. Also, the phase difference undergoes phase slip before executing sustained parametric oscillations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源