论文标题

使用块结构的自适应网格细化的几何多机求解器,使用块结构的自适应网格细化,有限的有限差弹性

Massively parallel finite difference elasticity using block-structured adaptive mesh refinement with a geometric multigrid solver

论文作者

Runnels, Brandon, Agrawal, Vinamra, Zhang, Weiqun, Almgren, Ann

论文摘要

在计算上求解弹性方程是许多材料科学和力学模拟中的关键组成部分。诸如变形诱导的微观结构演化,微裂纹和微伏成核等现象是需要精确应力和应变场的应用的示例。这些模拟的一个特征是问题域很简单(通常是直线代表体积元素(RVE)),但是内部拓扑特征的演变非常复杂。传统上,有限元方法(FEM)用于弹性计算;由于(1)使用等磁性元素处理复杂几何形状网格的能力以及(2)避免计算第二个衍生物的必要性,因此FEM几乎无处不在。但是,可变拓扑问题(例如,微观结构的演化)需要重新锻炼或自适应网格细化(AMR) - 两者都可能导致广泛的开销和有限的缩放率。块结构化AMR(BSAMR)是一种适应性网状细化的方法,它表现出良好的缩放,并且非常适合材料科学中的许多问题。在这里,可以使用有限差方法使用BSAMR有效地解决弹性方程。边界操作员方法用于处理不同类型的边界条件,并引入“无反流”方法来有效,容易处理BSAMR中出现的粗细边界。列出了示例,证明了这种方法在与材料科学相关的各种情况下使用:Eshelby夹杂物,断裂和微观结构的演变。合理的缩放率最多可达$ \ sim $ 4000处理器,并具有数千万的网格点,并且观察到良好的AMR效率。

Computationally solving the equations of elasticity is a key component in many materials science and mechanics simulations. Phenomena such as deformation-induced microstructure evolution, microfracture, and microvoid nucleation are examples of applications for which accurate stress and strain fields are required. A characteristic feature of these simulations is that the problem domain is simple (typically a rectilinear representative volume element (RVE)), but the evolution of internal topological features is extremely complex. Traditionally, the finite element method (FEM) is used for elasticity calculations; FEM is nearly ubiquituous due to (1) its ability to handle meshes of complex geometry using isoparametric elements, and (2) the weak formulation which eschews the need for computation of second derivatives. However, variable topology problems (e.g. microstructure evolution) require either remeshing, or adaptive mesh refinement (AMR) - both of which can cause extensive overhead and limited scaling. Block-structured AMR (BSAMR) is a method for adaptive mesh refinement that exhibits good scaling and is well-suited for many problems in materials science. Here, it is shown that the equations of elasticity can be efficiently solved using BSAMR using the finite difference method. The boundary operator method is used to treat different types of boundary conditions, and the "reflux-free" method is introduced to efficiently and easily treat the coarse-fine boundaries that arise in BSAMR. Examples are presented that demonstrate the use of this method in a variety of cases relevant to materials science: Eshelby inclusions, fracture, and microstructure evolution. Reasonable scaling is demonstrated up to $\sim$4000 processors with tens of millions of grid points, and good AMR efficiency is observed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源