论文标题
基于硅的旋转Qubit的高保真几何门
High-fidelity geometric gate for silicon-based spin qubits
论文作者
论文摘要
高保真操纵是实现易于断层量子计算的物理实现的关键。在这里,我们提出了一项协议,以实现基于硅的旋转量子的通用非绝热几何门。我们发现,几何门比动态门的优势取决于构建几何阶段的进化环。在适当的进化回路下,几何单量门门和CNOT门都可以优于系统和失调噪声的动力学对应物。我们还使用与硅中的实验一致的噪声幅度进行随机基准测量。对于静态噪声模型,几何门的平均保真度约为99.90 \%或更高,而对于时间依赖的$ 1/f $ -type噪声,当仅存在令人失望的噪声时,保真度约为99.98 \%。我们还表明,几何门的保真度比动态门的忠诚度通常会随着$ 1/f $噪声的指数$α$的增加而增加,当$α\ 3 $时,比率高达4。我们的结果表明,具有明智选择的进化回路的几何门可能是实现高保真量子门的有力方法。
High-fidelity manipulation is the key for the physical realization of fault-tolerant quantum computation. Here, we present a protocol to realize universal nonadiabatic geometric gates for silicon-based spin qubits. We find that the advantage of geometric gates over dynamical gates depends crucially on the evolution loop for the construction of the geometric phase. Under appropriate evolution loops, both the geometric single-qubit gates and the CNOT gate can outperform their dynamical counterparts for both systematic and detuning noises. We also perform randomized benchmarking using noise amplitudes consistent with experiments in silicon. For the static noise model, the averaged fidelities of geometric gates are around 99.90\% or above, while for the time-dependent $1/f$-type noise, the fidelities are around 99.98\% when only the detuning noise is present. We also show that the improvement in fidelities of the geometric gates over dynamical ones typically increases with the exponent $α$ of the $1/f$ noise, and the ratio can be as high as 4 when $α\approx 3$. Our results suggest that geometric gates with judiciously chosen evolution loops can be a powerful way to realize high-fidelity quantum gates.