论文标题
S-Step Orthomin和GMRE在并行计算机上实现
s-Step Orthomin and GMRES implemented on parallel computers
论文作者
论文摘要
正晶(AMIN)和广义最小残留方法(GMRE)通常使用迭代方法来近似于非对称线性系统的溶液。这些方法的S-步骤概括通过形成同时的搜索方向向量来增强其数据位置和属性。良好的数据局部性是在内存层次超级计算机上达到接近峰值的关键。 S-Step Arnoldi和Amin的理论推导曾经发表过。在这里,我们得出S-步骤GMRES方法。然后,我们在cray-2层次内存超级计算机上实现S-步骤AMIN和GMRE。
The Orthomin ( Omin ) and the Generalized Minimal Residual method ( GMRES ) are commonly used iterative methods for approximating the solution of non-symmetric linear systems. The s-step generalizations of these methods enhance their data locality parallel and properties by forming s simultaneous search direction vectors. Good data locality is the key in achieving near peak rates on memory hierarchical supercomputers. The theoretical derivation of the s-step Arnoldi and Omin has been published in the past. Here we derive the s-step GMRES method. We then implement s-step Omin and GMRES on a Cray-2 hierarchical memory supercomputer.