论文标题

用于多维社交网络的基于模型的聚类

Model-based clustering for multidimensional social networks

论文作者

D'Angelo, Silvia, Alfò, Marco, Fop, Michael

论文摘要

社交网络数据是在一组参与者之间记录的关系数据,在不同的情况下进行交互。通常,相同的演员可以以多维网络捕获的多个社会关系来表征。一个普遍的情况是在同一机构工作的同事,他们的社交互动可以在专业和个人层面上定义。此外,网络中的个人倾向于与其他人更频繁地互动,自然会创造社区。网络数据的潜在空间模型对于恢复参与者的聚类很有用,因为它们可以通过其位置和在可解释的低维社会空间中的相对距离之间表示相似之处。我们为多维网络数据提出了无限的潜在位置群集模型,该模型可实现基于模型的参与者跨多个社会维度相互作用的参与者的聚类。该模型基于贝叶斯非参数框架,该框架允许对聚类分配,集群数量和潜在社交空间进行自动推断。该方法在模拟数据实验上进行了测试,并用于研究两个多维网络中社区的存在,记录了同事之间不同类型的关系。

Social network data are relational data recorded among a group of actors, interacting in different contexts. Often, the same set of actors can be characterized by multiple social relations, captured by a multidimensional network. A common situation is that of colleagues working in the same institution, whose social interactions can be defined on professional and personal levels. In addition, individuals in a network tend to interact more frequently with similar others, naturally creating communities. Latent space models for network data are useful to recover clustering of the actors, as they allow to represent similarities between them by their positions and relative distances in an interpretable low dimensional social space. We propose the infinite latent position cluster model for multidimensional network data, which enables model-based clustering of actors interacting across multiple social dimensions. The model is based on a Bayesian nonparametric framework, that allows to perform automatic inference on the clustering allocations, the number of clusters, and the latent social space. The method is tested on simulated data experiments, and it is employed to investigate the presence of communities in two multidimensional networks recording relationships of different types among colleagues.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源