论文标题

Minkowski时空中的量子场和Rindler Wedge中的量子场中的扰动理论之间的等效性

Equivalence between the in-in perturbation theories for quantum fields in Minkowski spacetime and in the Rindler wedge

论文作者

Higuchi, Atsushi, Lima, William C. C.

论文摘要

我们研究了Minkowski时空和Rindler楔形中相互作用的真实标量场的时序真空相关函数之间的关系。相关函数是在形式主义中的扰动中构建的,通常在更一般的空间计算中使用。我们向扰动理论中的所有秩序证明,可以在形式主义中计算时间顺序的真空相关函数,内部顶点仅限于任何包含外部点的Rindler楔形物。这意味着真空相关函数的Minkowski In(或外部)扰动膨胀是由在未温度下在热状态下的这些相关剂的扰动膨胀物中的rindler重现。

We investigate the relation between the time-ordered vacuum correlation functions for interacting real scalar fields in Minkowski spacetime and in the Rindler wedge. The correlation functions are constructed perturbatively within the in-in formalism, often employed in calculations in more general spacetimes. We prove to all orders in perturbation theory that the time-ordered vacuum correlation functions can be calculated in the in-in formalism with internal vertices restricted to any Rindler wedge containing the external points. This implies that the Minkowski in-in (or in-out) perturbative expansion of the vacuum correlation functions is reproduced by the Rindler in-in perturbative expansion of these correlators in a thermal state at the Unruh temperature.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源