论文标题

通过$ U $统计排列测试的独立测试的最佳率

Optimal rates for independence testing via $U$-statistic permutation tests

论文作者

Berrett, Thomas B., Kontoyiannis, Ioannis, Samworth, Richard J.

论文摘要

我们研究了独立和相同分布对的独立性测试问题,以$σ$ - 罚款,可分开的度量空间进行值。将自然量度定义为$ d(f)$作为平方$ l^2 $ - 距离$ f $与边际产品的产物之间的距离,我们首先表明,没有有效的独立性测试,与形式$ \ \ {f:d(f)\ d(f)\ geq pect^2 \ \ fect off y sectionals均均无一致。因此,我们将注意力限制在对替代方案中施加额外的sobolev型平滑度约束,并根据基础扩展定义置换测试,在许多情况下,我们证明,我们证明我们证明这是最佳的$ d(f)$ $ d $ statistic估计器。最后,对于$ [0,1]^2 $的傅立叶基础,我们提供了功能功能的近似值,该功能提供了几种其他见解。我们的方法是在USP的R软件包中实现的。

We study the problem of independence testing given independent and identically distributed pairs taking values in a $σ$-finite, separable measure space. Defining a natural measure of dependence $D(f)$ as the squared $L^2$-distance between a joint density $f$ and the product of its marginals, we first show that there is no valid test of independence that is uniformly consistent against alternatives of the form $\{f: D(f) \geq ρ^2 \}$. We therefore restrict attention to alternatives that impose additional Sobolev-type smoothness constraints, and define a permutation test based on a basis expansion and a $U$-statistic estimator of $D(f)$ that we prove is minimax optimal in terms of its separation rates in many instances. Finally, for the case of a Fourier basis on $[0,1]^2$, we provide an approximation to the power function that offers several additional insights. Our methodology is implemented in the R package USP.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源