论文标题

i.i.d.的平均值的对数concovity and log-convexity随机变量

Log-concavity and log-convexity of moments of averages of i.i.d. random variables

论文作者

Lamkin, Philip, Tkocz, Tomasz

论文摘要

我们表明,阶矩的顺序小于I.I.D的平均值的1个。正随机变量是对数符号。在秩序的瞬间至少1时,我们猜想该序列是log-convex,并表明这最终适用于整数矩(在忽略了序列的第一个$ p^2 $项之后)。

We show that the sequence of moments of order less than 1 of averages of i.i.d. positive random variables is log-concave. For moments of order at least 1, we conjecture that the sequence is log-convex and show that this holds eventually for integer moments (after neglecting the first $p^2$ terms of the sequence).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源