论文标题

前景 - 背景平行压缩,带有残留的监视视频编码

A Foreground-background Parallel Compression with Residual Encoding for Surveillance Video

论文作者

Wu, Lirong, Huang, Kejie, Shen, Haibin, Gao, Lianli

论文摘要

数据存储一直是监视系统中的瓶颈之一。传统的视频压缩算法(例如H.264和H.265)不能完全利用监视视频的低信息密度特征。在本文中,我们提出了一种视频压缩方法,该方法分别提取和压缩视频的前景和背景。通过自适应背景更新和插值模块在多个相邻帧之间共享背景信息,可以极大地提高压缩率。此外,我们提出了两种不同的方案,以压缩前景并在消融研究中比较其表现,以显示时间信息对于视频压缩的重要性。在解码端,使用粗到最新的两阶段模块来实现前景和背景的组成以及框架质量的增强。此外,提出了一种用于监视摄像机的自适应采样方法,我们通过软件仿真显示了其效果。实验结果表明,与常规算法H.265相比,我们提出的方法需要在HECV数据集上实现相同的PSNR(36 dB)的BPP(每个像素位)少69.5%。

The data storage has been one of the bottlenecks in surveillance systems. The conventional video compression algorithms such as H.264 and H.265 do not fully utilize the low information density characteristic of the surveillance video. In this paper, we propose a video compression method that extracts and compresses the foreground and background of the video separately. The compression ratio is greatly improved by sharing background information among multiple adjacent frames through an adaptive background updating and interpolation module. Besides, we present two different schemes to compress the foreground and compare their performance in the ablation study to show the importance of temporal information for video compression. In the decoding end, a coarse-to-fine two-stage module is applied to achieve the composition of the foreground and background and the enhancements of frame quality. Furthermore, an adaptive sampling method for surveillance cameras is proposed, and we have shown its effects through software simulation. The experimental results show that our proposed method requires 69.5% less bpp (bits per pixel) than the conventional algorithm H.265 to achieve the same PSNR (36 dB) on the HECV dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源