论文标题
G2MF-WA:带有弱注释数据的几何多模型拟合
G2MF-WA: Geometric Multi-Model Fitting with Weakly Annotated Data
论文作者
论文摘要
在本文中,我们试图解决几何多模型拟合的问题,并诉诸于一些弱注释(WA)的数据点,到目前为止对此进行了稀疏研究。在较弱的注释中,大多数手动注释应该是正确的,但不可避免地会与错误混合。 WA数据可以自然地以一种交互式的方式用于特定任务,例如,在同型估计的情况下,可以通过观察图像来轻松地用单个标签在同一平面/对象上注释点。在此激励的情况下,我们提出了一种新颖的方法,可以充分利用WA数据来提高多模型拟合性能。具体而言,鉴于先验,使用WA数据构建了用于模型提案采样的图形,以相同的弱标签注释的WA数据具有很高的可能性,即被分配给同一模型。通过将这些先验知识纳入边缘概率的计算中,顶点(即数据点)位于/附近的潜在模型可能会连接在一起,并进一步形成一个子集/群集以生成有效的建议。通过生成的建议,标签采用了$α$ - 扩展,而我们的方法返回提案。这以迭代方式起作用。广泛的实验验证了我们的方法,并表明所提出的方法在大多数情况下比最先进的技术产生的结果明显更好。
In this paper we attempt to address the problem of geometric multi-model fitting with resorting to a few weakly annotated (WA) data points, which has been sparsely studied so far. In weak annotating, most of the manual annotations are supposed to be correct yet inevitably mixed with incorrect ones. The WA data can be naturally obtained in an interactive way for specific tasks, for example, in the case of homography estimation, one can easily annotate points on the same plane/object with a single label by observing the image. Motivated by this, we propose a novel method to make full use of the WA data to boost the multi-model fitting performance. Specifically, a graph for model proposal sampling is first constructed using the WA data, given the prior that the WA data annotated with the same weak label has a high probability of being assigned to the same model. By incorporating this prior knowledge into the calculation of edge probabilities, vertices (i.e., data points) lie on/near the latent model are likely to connect together and further form a subset/cluster for effective proposals generation. With the proposals generated, the $α$-expansion is adopted for labeling, and our method in return updates the proposals. This works in an iterative way. Extensive experiments validate our method and show that the proposed method produces noticeably better results than state-of-the-art techniques in most cases.