论文标题
高强度超声引起的Moore-Gibson-Thompson方程的逆问题
An inverse problem for Moore-Gibson-Thompson equation arising in high intensity ultrasound
论文作者
论文摘要
在本文中,我们研究了恢复摩尔 - 吉布森 - 汤普森(MGT)方程的空间依赖系数的反问题,该系数从在边界的某个开放子集中了解解决方案的痕迹的知识。我们为这个反问题获得Lipschitz稳定性,并为未知系数的重建设计了收敛算法。所使用的技术基于Carleman的不平等,用于MGT方程的波程和性质。
In this article we study the inverse problem of recovering a space-dependent coefficient of the Moore-Gibson-Thompson (MGT) equation, from knowledge of the trace of the solution on some open subset of the boundary. We obtain the Lipschitz stability for this inverse problem, and we design a convergent algorithm for the reconstruction of the unknown coefficient. The techniques used are based on Carleman inequalities for wave equations and properties of the MGT equation.