论文标题

在CO3O4中提高室温磁性离子学

Boosting room temperature magneto-ionics in Co3O4

论文作者

de Rojas, Julius, Quintana, Alberto, Lopeandía, Aitor, Salguero, Joaquín, Costa-Krämer, José L., Abad, Llibertat, Liedke, Maciej O., Butterling, Maik, Wagner, Andreas, Henderick, Lowie, Dendooven, Jolien, Detavernier, Christophe, Sort, Jordi, Menéndez, Enric

论文摘要

通过电场诱导的氧运动(磁离子)对磁力控制的电压控制可能代表着追求新策略的重大突破,以提高各种磁性恶魔的能源效率,例如磁性微电力机械系统(MEMS),例如磁性逻辑,磁性逻辑,旋转电子设备,或神经局部计算计算,即提高引起的磁化,磁性运动和循环性(耐力)的变化仍然是将磁性现象转变为实际应用的关键挑战。在这里,我们证明,在不降解环的性能的情况下,电解质门控的顺磁性和相当厚(> 100 nm)CO3O4膜中的室温磁性运动在很大程度上取决于用于应用电场的配置。特别是,在产生的磁化(6倍大:从118.5到699.2 EMU CM-3)和速度(33.1倍:从33.1到1170.8 EMU CM-3 H-1)而言,如果电场在电池式填充层(Co3 co3 co3 co3 co3),则磁离子的影响显着增加(6倍:从118.5到699.2 EMU CM-3)和速度(33.1到1170.8 EMU CM-3 H-1)。这归因于使用导电层时所施加的电场的均匀性和强度。这些结果可能会触发氧气离子学用于有希望的新技术,例如磁性磁极或脑启发的计算,这些计算需要耐力和中等的操作速度。

Voltage control of magnetism through electric field-induced oxygen motion (magneto-ionics) could represent a significant breakthrough in the pursuit for new strategies to enhance energy efficiency in a large variety of magnetic devices, such as magnetic micro-electro-mechanical systems (MEMS), magnetic logics, spin electronics, or neuromorphic computing, i.e., envisaging ultra-low power emulation of the biological synapse. Boosting the induced changes in magnetization, magneto-ionic motion and cyclability (endurance) continue to be key challenges to turn magneto-ionic phenomena into real applications. Here, we demonstrate that, without degrading cyclability, room temperature magneto-ionic motion in electrolyte-gated paramagnetic and fairly thick (> 100 nm) Co3O4 films largely depends on the configuration used to apply the electric field. In particular, magneto-ionic effects are significantly increased both in terms of generated magnetization (6 times larger: from 118.5 to 699.2 emu cm-3) and speed (35 times faster: from 33.1 to 1170.8 emu cm-3 h-1) if the electric field is applied across a conducting buffer layer (grown underneath the Co3O4 films), instead of directly contacting Co3O4. This is attributed to a greater uniformity and strength of the applied electric field when using the conducting layer. These results may trigger the use of oxygen magneto-ionics into promising new technologies, such as magnetic MEMS or brain-inspired computing, which require endurance and moderate speeds of operation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源