论文标题
Békollè-bonami的某些伪共子域的重量
A Békollè-Bonami Class of Weights for Certain Pseudoconvex Domains
论文作者
论文摘要
我们证明了普通伯格曼(Bergman)投影的加权$ l^p $定期性,这些伯格(Pseudoconvex)域上的重量属于Békollè-Bonami类的适当概括。使用的主要工具是麦克尼尔(McNeal)和贝科尔(Békollè)最初证明善良不平等的伯格曼内核估计值。
We prove the weighted $L^p$ regularity of the ordinary Bergman projection on certain pseudoconvex domains where the weight belongs to an appropriate generalization of the Békollè-Bonami class. The main tools used are estimates on the Bergman kernel obtained by McNeal and Békollè's original approach of proving a good-lambda inequality.