论文标题

自由代数的函子从山地的角度来看

Free-algebra functors from a coalgebraic perspective

论文作者

Gumm, H. Peter

论文摘要

给定一个方程式的$σ$,每个套装变量的$ x $ aussosiates $f_σ$ aSsociates a $ x $ the $ x $f_f_σ(x)$ by $ x $。将\ emph {derivative} $σ的概念扩展为任意集的方程式$σ$,最初由Dent,Kearnes和Szendrei定义,我们表明$f_σ$在$σ\vdashσ'$(即$ n $)(即$ nive $ nive $ derive $ derive $ derive $ derive $ derive $ derive $ derive $ derive $ nivive n时)。如果$f_σ$弱保留内核对,则每个方程式$ p(x,x,y)= q(x,y,y,y)$产生$ s(x,y,y,z,u)$,使得$ p(x,x,y,y,z)= s(x,x,y,y,z,z)$ and $ q(x,x,x,x,x,x,x,x,y,z)= s(x,x,x,x(x,x,x,y y,x,y y,x,y y,y,y y,y,y y,y y,y y y y y y y y y y y y y y y y y y y y,x,y y)$。在这种情况下,N-渗透品种必须已列出,即Mal'cev。相反,如果$σ$定义了mal'cev品种,则$f_σ$弱保留内核对。作为一种工具,我们证明,当且仅当它们弱地保留EPIS的回调时,任意$ set- $ endofunctors $ f $弱保存内核对。

Given a set $Σ$ of equations, the free-algebra functor $F_Σ$ associates to each set $X$ of variables the free algebra $F_Σ(X)$ over $X$. Extending the notion of \emph{derivative} $Σ'$ for an arbitrary set $Σ$ of equations, originally defined by Dent, Kearnes, and Szendrei, we show that $F_Σ$ preserves preimages if and only if $Σ\vdash Σ'$, i.e. $Σ$ derives its derivative $Σ'$. If $F_Σ$ weakly preserves kernel pairs, then every equation $p(x,x,y)=q(x,y,y)$ gives rise to a term $s(x,y,z,u)$ such that $p(x,y,z)=s(x,y,z,z)$ and $q(x,y,z)=s(x,x,y,z)$. In this case n-permutable varieties must already be permutable, i.e. Mal'cev. Conversely, if $Σ$ defines a Mal'cev variety, then $F_Σ$ weakly preserves kernel pairs. As a tool, we prove that arbitrary $Set-$endofunctors $F$ weakly preserve kernel pairs if and only if they weakly preserve pullbacks of epis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源