论文标题

用于安全布尔计算的编码计算

Coded Computing for Secure Boolean Computations

论文作者

Yang, Chien-Sheng, Avestimehr, A. Salman

论文摘要

现代数据集的规模不断增长,需要将大规模计算分为较小的计算,并以分布式方式运行。分布式系统中的对手故意发送错误的数据,以影响其利益的计算。布尔函数是许多应用程序的关键组成部分,例如,区块链系统中的验证功能和加密算法的设计。我们考虑在分布式计算系统中计算布尔函数的问题,特别关注\ emph {对拜占庭工人的安全}。任何布尔函数通常都可以建模为具有高度的多元多项式。但是,如果多项式较高的程度很高,则可以容忍的安全阈值(即,可以容忍最大的对抗工人数量,以便可以获得正确的结果)。我们提出了三种称为\ emph {编码代数正常形式(anf)}的不同方案,\ emph {编码析出的法线形式(DNF)}和\ emph {编码的多项式阈值函数(PTF)}。提出的方案的关键思想是将其建模为一些低级多项式和阈值函数的串联。就安全性阈值而言,我们表明提出的编码ANF和编码DNF是通过提供匹配的外部界限最佳的。

The growing size of modern datasets necessitates splitting a large scale computation into smaller computations and operate in a distributed manner. Adversaries in a distributed system deliberately send erroneous data in order to affect the computation for their benefit. Boolean functions are the key components of many applications, e.g., verification functions in blockchain systems and design of cryptographic algorithms. We consider the problem of computing a Boolean function in a distributed computing system with particular focus on \emph{security against Byzantine workers}. Any Boolean function can be modeled as a multivariate polynomial with high degree in general. However, the security threshold (i.e., the maximum number of adversarial workers can be tolerated such that the correct results can be obtained) provided by the recent proposed Lagrange Coded Computing (LCC) can be extremely low if the degree of the polynomial is high. We propose three different schemes called \emph{coded Algebraic normal form (ANF)}, \emph{coded Disjunctive normal form (DNF)} and \emph{coded polynomial threshold function (PTF)}. The key idea of the proposed schemes is to model it as the concatenation of some low-degree polynomials and threshold functions. In terms of the security threshold, we show that the proposed coded ANF and coded DNF are optimal by providing a matching outer bound.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源