论文标题
Specker代数:调查
Specker Algebras: A Survey
论文作者
论文摘要
对于具有身份的交换环$ r $,specker $ r $ algebra是由iDempotents的布尔代数产生的可交换Unital $ r $ $ r $ - 代数,每个非零元素都是忠实的。此类代数在研究$ \ ell $ groups,Idempotent生成的环,通勤环,Pierce二元性和连续实现功能的环的研究中出现了。我们从对有限整数价值函数的亚组的早期研究到涉及依从性产生代数的环理论,拓扑和同源方面的各种当前环境来追溯这种概念的起源。
For a commutative ring $R$ with identity, a Specker $R$-algebra is a commutative unital $R$-algebra generated by a Boolean algebra of idempotents, each nonzero element of which is faithful. Such algebras have arisen in the study of $\ell$-groups, idempotent-generated rings, Boolean powers of commutative rings, Pierce duality, and rings of continuous real-valued functions. We trace the origin of this notion from early studies of subgroups of bounded integer-valued functions to a variety of current contexts involving ring-theoretic, topological, and homological aspects of idempotent-generated algebras.