论文标题

关于普通本地戒指的$ f $ pure-pure阈值的积累点

On accumulation points of $F$-pure thresholds on regular local rings

论文作者

Sato, Kenta

论文摘要

Blickle,Mustaţă和Smith提出了两个猜想,以$ f $ pure的阈值限制。一个猜想询问是否可以将固定尺寸的常规本地环上的$ f $ pure理想阈值的序列写为较低维度的$ f $ pure阈值。另一个猜想预测,正式功率系列的任何$ f $ pure阈值都可以写为多项式的$ f $ pure-pure阈值。在本文中,我们证明了第一个猜想有反例,但较弱的陈述仍然存在。我们还为第二个猜想给出了部分肯定的答案。

Blickle, Mustaţă and Smith proposed two conjectures on the limits of $F$-pure thresholds. One conjecture asks whether or not the limit of a sequence of $F$-pure thresholds of principal ideals on regular local rings of fixed dimension can be written as an $F$-pure threshold in lower dimension. Another conjecture predicts that any $F$-pure threshold of a formal power series can be written as the $F$-pure threshold of a polynomial. In this paper, we prove that the first conjecture has a counterexample but a weaker statement still holds. We also give a partial affirmative answer to the second conjecture.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源