论文标题

6D对象通过对点云的监督学习姿势回归

6D Object Pose Regression via Supervised Learning on Point Clouds

论文作者

Gao, Ge, Lauri, Mikko, Wang, Yulong, Hu, Xiaolin, Zhang, Jianwei, Frintrop, Simone

论文摘要

本文解决了从点云表示的深度信息中估算已知3D对象的6个自由度姿势的任务。卷积神经网络从颜色信息中学到的深度特征已成为用于推断物体姿势的主要特征,而深度信息则受到了较少的关注。但是,深度信息包含对象形状的丰富几何信息,这对于推断对象姿势很重要。我们使用以点云表示的深度信息作为深网和基于几何姿势改进的输入,并使用单独的网络进行旋转和翻译回归。我们认为,轴 - 角度表示是深度学习的合适旋转表示,并使用地球损失函数进行旋转回归。消融研究表明,这些设计选择的表现优于诸如季度表示和L2损失,或者使用同一网络回归翻译和旋转。我们简单而有效的方法显然优于YCB-Video数据集上的最先进方法。实施和训练有素的模型可避免:https://github.com/geeeg/cloudpose。

This paper addresses the task of estimating the 6 degrees of freedom pose of a known 3D object from depth information represented by a point cloud. Deep features learned by convolutional neural networks from color information have been the dominant features to be used for inferring object poses, while depth information receives much less attention. However, depth information contains rich geometric information of the object shape, which is important for inferring the object pose. We use depth information represented by point clouds as the input to both deep networks and geometry-based pose refinement and use separate networks for rotation and translation regression. We argue that the axis-angle representation is a suitable rotation representation for deep learning, and use a geodesic loss function for rotation regression. Ablation studies show that these design choices outperform alternatives such as the quaternion representation and L2 loss, or regressing translation and rotation with the same network. Our simple yet effective approach clearly outperforms state-of-the-art methods on the YCB-video dataset. The implementation and trained model are avaliable at: https://github.com/GeeeG/CloudPose.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源